SPATIAL LOCALIZATION OF THERMAL PERTURBATIONS
IN HEATING A MEDIUM WITH BULK HEAT ABSORPTION

K. B. Pavlov UDC 517.946

Solutions are constructed of a type of thermal wave describing stationary and nonstationary
heating processes of a medium with constant thermal conducting and with bulk heat absorp-
tion,

For isotropic media, whose thermal conductivity coefficient » is a power of temperature T, » =x0Tk,
g, k=const >0, thermal perturbations propagate from the heat source with constant velocity [1]. If there
is bulk heat absorption in the medium, motion of the thermal heat front, separating regions with VT =0 and
VT # 0, can occur only at a definite finite distance [2].

The spatial localization of thermal perturbation and the restricted advance of the thermal wave front
can be also observed in case of media with a constant thermal conductivity coefficient v, in the presence of
bulk heat absorption in them, "thermal sinks.®” We consider below the heating process of an isotropic
medium with » =n,, filling the half-space z >0 and having a constant initial temperature T, =const > 0,
when the surface temperature at z =0, starting at time t =0, varies by the law T =Tw(t).

If thermal sinks f act in a medium with a constant thermal conductivity, and we assume the existence
of a thermal wave front z = ¢ (t), the temperature distribution T(z, t) and 0= z=<¢ (t) is determined from the
solution of the problem

0T | 0t = ad®T / 02 — [ (2,1, T), T (z,0) = T,

, aT @
1 (O:t) = Tw(t)a T[Q(l)vt] = TO: _()_z—[; (t)vtl =0

Here and in what follows a = n,c~!p~1 is the constant thermal conductivity coefficient, and ¢ and p
are the specific heat and density of the medium. In the open region D of the phase plane zt (0 <z < ¢(t), 0 <
t< T <) it I8 required to determine a function T(z, t), continuous together with its derivative 8 T(z, t)/0z
everywhere in the closed region D, except, perhaps, the point (0,0), The solution of problem (1) assumes a
definite law of motion of the unknown boundary z = £ (t), the thermal wave front. For ¢ (t}<z<»,0< t <
T < the temperature distribution is T(z, t) =T,.

The existence of regions with different analytic expressions for the temperature distribution, charac-
teristic of solutions of the thermal wave type, is ultimately related to singular solutions of ordinary differ-
ential equations, while at the same time there is no difference between media with a constant thermal con-
ductivity and media with a temperature~dependent thermal conductivity.

To explain the analytic nature of solutions of the thermal wave type, consider the problem of deter-
mining the stationary temperature distribution in a2 medium with a constant thermal conductivity and thermal
sinks of the form

f=9T0(T —Ty, T>T, 2)
vy = const >0, n = const >—1, 0(F — Ty)== }Jim (T — Ty~ ¢
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with a constant temperature value Ty, > T at the surface z=0. Thermal waves, found by solving (1), can
be obtained from the problem

aT/dt = ad*T/oF* — f(z,1, T), T (z,0) = T,
i .
T(0,0)=Tu(t), T(o,t)=To, —S—(c0,t)=0 3)

TIL() —0,t) =T (5 (1) + 0,1, S-[4() — 0, 8] =-2-[5 (1) +0, 1)

where 0 <z <, 0 <t< 7 < . The identity of solutions of problems (1) and (3) for the same thermal sinks
f can be established if both solutions are represented in integral form by means of the source function for
a semi-infinite straight line [3]. Integrating once the stationary equation (3) with boundary conditions (3)
for z —«, one obtains

dTjds = A(T™ — T3, A= —(27/a(t + m)h (4)

Obviously, Eq. (4) is satisfied by the solution T =T, and the partial solution arriving at the zT plane
through the point (0, Tp,y) is described in the form

T

dr
Az =\ — T )
'r},.o(rml — Ty

For T — T, the integral in (5) becomes improper. It converges if T =0 for—1<n<1, or if T3>0
for n = 1. Inthese cases z — {, <=, i.e., the integral curve (5) passes the zT plane at the point (&,, Tp)
on the straight line T=T,. Consequently, the solution T =T, is a singular solution, since uniqueness [4] is
violated in all its points. On the zT plane the singular solution T =T, is the envelope of the set of partial
solutions of Eq. (4). For exactly this reason the stationary solution of problem (2), (3) can be represented
as a function, joined at the point z=¢, from the partial solution (5), which determines the temperature dis-
tribution in the perturbed region at 0 = z = {; and the singular solution T =T;, which determines the con-
stant temperature in the unperturbed region at ;= z< .

Analyzing the model problem describing nonstationary heating processes of media considered in
[1, 2, 5] and in the present paper, it can be verified that the ordinary differential equation which should be
integrated to solve such problems has a singular solution. The existence of a singular solution guarantees
the possibility of joining the integral surfaces T(z, t) # const and T(z, t) =T, =const along the line z=¢(t),
describing the law of motion of a thermal wave front.

The connection between solutions of the thermal wave front and the existence of singular solutions of
the corresponding ordinary differential equations can also be established for arbitrary nonstationary regions
of heated media. Indeed, for sufficiently short time intervals during which the propagation velocity of a
thermal wave can be assumed constant, the temperature distribution close to the front is described in a
coordinate attached to the wave front by anordinary differential equation with a singular solution. The singu-
lar solution corresponds always to a constant temperature in the unperturbed portion of the medium, while
the temperature distribution in the perturbed region is described by the partial solution, joined to the singu-
lar solution at the surface of the thermal wave front.

We turn now to concrete examples of solutions of the thermal wave type describing some heating
region of a medium with a constant thermal conductivity and bulk heat absorption.

Let

f=hHh=nexp(alz—L@ONO(T —T,)

6
a, To = const 2> 0, y, = const >0 ©)

If the wall (z =0) temperature increases monotonically according to the expression

To(t)=To + %[ ax exp (z;'t/:)_:—at;exp (—owt) 1] , v = const >0 @

the temperature distribution in the medium can be determined by solving the problem (1), (6), (7). Asa
result one obtains
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A _1] for 0<<z<CL ()

40 & for L)<z <00 @)
t) = vt

T [ex exp [— v (z — vt)/q] 4 vexp[x(z — 1))
T(z z)——(T°+ va[

There exists, thus, in the medium a thermal wave front z ={ (t), moving with constant velocity from
the surface z =0.

We note that the problem (1), (6) has a stationary solution if the surface z =0 is subject to a constant

temperature Ty, (t) =Ty, =const, Ty > T,. In this case the temperature distribution in the medium is de-
termined by the expressions

T = |Tot s lexplaG—t)l—olz—L)~ 1] or 0<z<, (9)
l Ty for fo<lz<C o0

while the location of the immobile thermal wave front z = §,, i.e., the boundary of the warmed layer of the
medium flowing to the heated surface, should be found by solving the transcendental equation

exp (— aly) + aly =1 + (aa®/yy) (Trmo — To) (10)

We determine the temperature distribution for an oscillating region of the surface (z =0) temperature

To () = Tpo + Tnueiml, Trmoy Trps @ = comst > 0,

(11
Tml)_' T0> Tml

For simplicity we assume that in the expression of thermal sinks (9) o = 0, so that the solution of
the problem without initial conditions (1), (6), (11) is reasonably represented in the f orm

Trg + Trch Qyzexp (iot) - 72'22 + Agz - 2 A;shQzexp (ilot)
T(z,8) = {=o
for 0<Cz<C5(2)
T, for £(t)<<z< oo (12)

L) = % L exp (ijot), Q=1+ i)V olj2a, 4,, A,..., L5, Lypers — const
;5

The function T(z, t) of (12) satisfies the differential equation and boundary conditions (1) at the sur-
face z =0 with Ty, (t) determined according to (11). From the expressions for T(z, t) and £ (t) (12) and the
boundary conditions (1) at the thermal wave front z =¢ (t) one can find the constants Ay, Ay, ..., &y, &y

aT 9,

Eo 1/——- (Tmo TO)’ §1 = T18h 180 ’
Fp== — T3, Q%2 cth Qo . 9
52 271 sh¥ge "

5 .
Ao = - ‘h (TmO - TO) Al = Am oth QléO’
A o __im"__

2 7" T2y sh¥ o sh Qo

We note that the expression £, (13) determines the stationary location of the thermal wave front in
the medium if the surface z=0 is subject to a constant temperature Ty, > Ty >0.

We assume now that thermal sinks of the form

f=f=Yyyut-40(T), ;= const >0 (14)
act in the medium.

If the surface (z =0) temperature varies by the law

T () = 7, lexp (8%/2) — 11V't, & = const >0 (15)
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and the initial medium temperature is T, =0, the temperature distribution in the medium can be determined
by solving the model problem (1), (14), (15). As a result we obtain

Th =" Vi {eXP (& —E0)2] + Vf Eexp (5o/2) [@ (B) — D@ (Bo)) — 1}

0 for 0<Cz<CE(t) (16)
for 2t <<z o0

L) =tV 2, t=2/V 2t
where ®(§) and & (§,) are error integrals.
Consider thermal sinks of the form
f=1s=%sT0(T — Ty), s Ty = const >0 an

We note that it is possible, in principle, to consider the more general action law of thermal sinks
J3 contained in the first part of Eq. (17) in the exponential factor exp (a[z—¢ (t)]). The corresponding re-
sults, however, are not given here due to the awkwardness of the final relations,

If the surface (z =0) temﬁerature oscillates harmonically by (11), the temperature distribution in the
medium can be determined by solving the problem without initial conditions (1), (11), (17). Corresponding
calculations lead to

TmochQgz 4 T'ox cl;le exp int 4 2 A;shQuzexpilot
I=0 .

for 0<z<<L ()
T, v for ()<<2<C o0 (18)

T (z,t)=

Lty = ) Lyexpijot
i=0

Trno t— T,
To ? 1 1903 8h Qifo

N 1
0, = (et ¢ — 5 droh

T2 Q1%Q: cth Q6o — e
ci = 2T Qo sh? o ° ce Ao VTM To

T2 Q8 19
A1 = — Tml cth ngo, A; = P4 0K Sh"gg;o ST cee ( )

The expression of {; (19) determines the stationary location of the thermal wave front in the medium
if the surface z=0 is subject to a constant temperature T,y > Ty > 0.

If the surface (z =0) temperature varies according to

Ty () = Toe?™ (ch d vt — B6-* sh dut), v= const >0

- 20
B = /24,86 = Vv¥4a* + vda (20)

the temperature distribution in the nedium, obtained by solving the model problem (1), (17), (20), has the

following form: :

Toexp[— B(z —vt)] [ch& (z —vt) + —g—sh6(z — vt)]

for 0z <CL(t)
T, for s (B)<z

T(z,t)=
ey

C(t) = vt
i.e., the thermal wave front z = £ (t) moves in the medium with constant velocity v. We assume that thermal
sinks of the form
= fi=vT%(T), B, v, =const, [p|<<q, >0 ., (22)
act in the medium with T, = 0,

When the surface (z = 0) temperature is Ty(t) = Ty, = const > 0, the following temperature distribu-
tion [2] occurs in the medium:
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’ T Tmo (1 —2[Le)0-0 for  0<<z<CE,
(2) = { 0 for <Kzl
o =120 (1 + Y1 Tha (1 — B2y (23)

If the surface (z =0) tem perature in the initial momentoftimet=0varies discontinuously from T =0
to Ty, (t) =T, =const, taking into account the stationary solution (23), an approximate expression of the
temperature distribution can be sought in form

T(z,8) = Tpo 1 — 2/ (H)l20-B) . 24)
Since
TIE(e)t =%€-[C(t),t] =0,

by integrating the differential equation (1) over z from 0 to ¢ () one obtains an integral equation of thermal
balance

£

[ (

d or {

X S T(othdz =~ a5 0,0 =% | T°(z, 1) dz (25)
0

0

Substituting (24) in (25), one can obtain an approximate law of motfon of the thermal wave front z =
¢ (t), satisfying the condition £ (0) =0

() = to{t — exp | — TLE 00 || (26)

where ¢ ; is determined by (23). Within the same approximation one can estimate the relaxation time to the
stationary region (23)

tr = T (1 +8) fara (1 — B) 27

The examples given indicate, indeed, that spatially localized thermal waves whose front propagates
with finite velocity from the source of thermal perturbations. can be formed in media with bulk heat absorp-
tion. The necessity of studying the solution of the thermal conductivity equation with a term describing
sinks f arises,in particular, in considering the process of heat propagation in a thin rod of layer, accom-
panied by beat transfer to surrounding space. We also note that the solutions mentioned can be success-
fully applied to other transport processes, such as gas diffusion in simple media with high absorption.
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